Dr. Matthew Crosby

AI and Philosophy of Mind

Imperial College London

email: matt@mdcrosby.com






squidoodle's steampunkCHIMP


Currently working on the Animal-AI Olympics, a competition to test for cognitive abilities in AI systems.

I am postdoctoral researcher on the Kinds of Intelligence project at the Leverhulme Centre for the Future of Intelligence. I am based at Imperial College London, working in Murray Shanahan's lab. I specifically want to be able to improve our answer to the following:

How do we build a machine that `has a mind' and is this necessary for creating an agent with common sense?


I have a blog about consciousness, philosophy of mind, AI and the future of intelligence. Currently on hold until I finish some other projects (or become better at time management).

Selected Publications

Please also see my Google Scholar page

  • Building Thinking Machines by Solving Animal Cognition Tasks, Minds and Machines 2020 [link]
  • The Animal-AI Testbed and Competition, Crosby et al, Proceedings of Machine Learning Research 2020 (accepted awaiting official publication) [preprint link]
  • Defining Artificial Intelligence: Resilient Experts, Fragile Geniuses, and the Potential of Deep Reinforcement Learning, Crosby and Shevlin, Journal of Artificial General Intelligence 2020 [link]
  • The Animal-AI Environment: Training and Testing Animal-Like Artificial Cognition, Beyret et al, ArXiv 2019 [link]
  • The Limits of Machine Intelligence, Shevlin et al, EMBO Reports 2019 [link]
  • The Animal-AI Olympics, Corsby, Beyret and Halina, Nature: Machine Intelligence 2019 [link]
  • Why artificial consciousness matters Towards Conscious AI Systems, AAAI Spring Symposium 2019 [pdf]
  • Testing the vertical and cyber-physical integration of cognitive robots in manufacturing Krueger et al, Robotics and Computer-Integrated Manufacturing 2019 [link]
  • Mapping intelligence: Requirements and possibilities Bhatnagar et al, Philosophy and Theory of Artificial Intelligence, Springer 2018 [link]
  • SkiROS: A skill-based robot control architecture on top of ROS Rovida, Crosby, et al, Robot Operating System (ROS) Springer, 2017 [Book Chapter, link]
  • Integrating Mission and Task Planning in an Industrial Robotics Framework Matthew Crosby, Francesco Rovida, Volker Krueger and Ron Petrick, International Converence on Automated Planning and Scheduling (ICAPS) 2017 [pdf]
  • A Vertical and Cyber-Physical Integration of Cognitive Robots in Manufacturing Volker Krueger et al, Proceedings of the IEEE Volume:104, Issue: 5 2016 [link] Describes the robot architecture created for the STAMINA project.
  • ADP: an Agent Decomposition Planner CoDMAP 2015 ICAPS Proceedings of the Competition of Distributed and Multi-Agent Planners (CodMAP) 2015 [pdf]
  • A Single-Agent Approach to Multiagent Planning Crosby, Jonsson, and Rovatsos, 21st European Conference on Artificial Intelligence (ECAI) 2014 [pdf]
  • Improving Planner Performance in Grid Worlds with Macro Actions Crosby and Petrick, The 9th International Workshop on Cognitive Robotics (CogRob) at the 21st European Conference on Artificial Intelligence (ECAI) 2014 (Short Paper) [pdf]
  • Temporal Multiagent Planning with Concurrent Action Constraints Crosby and Petrick, Distributed and Multiagent Planning workshop (DMAP) at the International Conference on Automated Planning and Scheduling (ICAPS) 2014 [pdf]
  • Multiagent Classical Planning PhD Thesis 2014 [pdf] Mainly about solving classical planning problems quickly by decomposing into subproblems (that resemble separate agents). Also contains some work on centralised planning for self-interested agents and concurrent action planning.
  • Automated Agent Decomposition for Classical Planning Matthew Crosby, M.Rovatsos and R.Petrick, International Conference on Automated Planning and Scheduling (ICAPS) 2013 [pdf] Introduction to the ADP algorithm which automatically decomposes planning problems into separate agents and then employs a agentified variation of the FF heuristic to quickly find plans.
  • Heuristic Multiagent Planning with Self-Interested Agents Matthew Crosby and M.Rovatsos, International Conference on Autonomous Agents and Multiagent Systems (AAMAS) 2011 (Extended Abstract) [pdf] Contains a centralised planning algorithm that outputs stable plans for self-interested agents on a restricted class of planning problems (Safe-CoPGS). A more detailed look can be found in my PhD thesis (though this topic did not become the main focus of the work).
  • Evolving a Roving Eye for Go Matthew Crosby, Master's Thesis 2008 [pdf] In which the results of a paper aiming to create a go playing roving eye capable of 'seeing' only a 3x3 grid of the go board at a time were attempted to be reproduced. This could have been subtitled: "On why using a small input space for a global problem and testing your program against a deterministic games player is a bad idea". Or: "Who knew a 19 x 19 x 48 image stack would be a feasible sized input to a neural network 5 years down the line? (Alphago)"


ADP Planner (planner with best coverage in CodMAP 2015 competition) - including the snapshot of Fast-Downward it was built for - can be found here. After compiling, run with the option --heuristic 'hff=adp(cost_type=1)' --search 'lazy_greedy(hff, preferred=hff)'. See Fast Downward site for required libraries in case of installation issues.

Python ma-PDDL Parser ppp.py: for translating multiagent pddl with concurrent action constraints to temporal planning problems (see DMAP 2014 paper [pdf]). An updated version was used in the CodMAP 2015 competition (which may be more useful to you), see here for information and contacts.


A mindfulness alerter, that will randomly alert you a few times a day. Comes from this blog post.

Notes for the computational neuroscience reading group held in Edinburgh (Jan-April 2017) can be found here.

Notes from a very basic introduction to neural networks in python that was run as part of the reading group can be found here.

The jar file for a text adventure game I made when I took my first (and only) proper class in programming (2007) can be found here.